MAX materials and MXene materials are new two-dimensional materials that have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and have shown broad application prospects in numerous fields. The following is an in depth overview of the properties, applications, and development trends of MAX and MXene materials.
Precisely What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material consisting of M, A, X elements in the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, like titanium, zirconium, hafnium, etc., A represents the main group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is made up of M, A, X, three of the aspects of the alternating composition arrangement, with hexagonal lattice structure. Because of their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding and other fields.
Properties of MAX material
MAX material is a new type of layered carbon nitride inorganic non-metallic material with the conductive and thermal conductive qualities of metal, composed of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers to the main-group elements, and X refers to the aspects of C and N. The MXene material is a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MXenes material are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have an array of applications in structural materials. For instance, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials can also be utilized in functional materials. For instance, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials also have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which is often found in energy materials. As an example, K4(MP4)(P4) is one from the MAX materials rich in ionic conductivity and electrochemical activity, which bring a raw material to produce solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials really are a new form of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The outer lining of MXene materials can interact with more functional atoms and molecules, and a high specific surface, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually are the etching therapy for the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties like electrical conductivity, magnetism and optics could be realized.
Properties of MXene materials
MXene materials are a new kind of two-dimensional transition metal carbide or nitride materials consisting of metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the ability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and are commonly used in energy storage and conversion. For example, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials may also be used as catalysts in fuel cells to boost the action and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be utilized in electromagnetic protection. For example, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. As an example, MXene materials bring gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Furthermore, MXene materials could also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Down the road, using the continuous progress of technology and science as well as the increasing demand for applications, the preparation technology, performance optimization, and application areas of MAX and MXene materials will be further expanded and improved. The subsequent aspects could become the main focus of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques could be further explored to understand a much more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is already high, however, there is still room for further optimization. In the future, the composition, structure, surface treatment as well as other facets of the content can be studied and improved comprehensive to improve the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been popular in numerous fields, but there are still many potential application areas to be explored. Later on, they could be further expanded, like in artificial intelligence, biomedicine, environmental protection along with other fields.
To conclude, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in many fields. With the continuous progress of science and technology and the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials is going to be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.